Cytochrome P450-derived arachidonic acid metabolism in the rat kidney: characterization of selective inhibitors.
نویسندگان
چکیده
We characterized the inhibitory activity of several acetylenic and olefinic compounds on cytochrome P450 (CYP)-derived arachidonic acid omega-hydroxylation and epoxidation using rat renal cortical microsomes and recombinant CYP proteins. Among the acetylenic compounds, 6-(2-propargyloxyphenyl)hexanoic acid (PPOH) and N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide were found to be potent and selective inhibitors of microsomal epoxidation with IC50 values of 9 and 13 microM, respectively. On the other hand, 17-octadecynoic acid inhibited both omega-hydroxylation and epoxidation of arachidonic acid with IC50 values of 7 and 5 microM, respectively. The olefinic compounds N-methylsulfonyl-12, 12-dibromododec-11-enamide (DDMS) and 12, 12-dibromododec-11-enoic acid (DBDD) exhibited a high degree of selectivity inhibiting microsomal omega-hydroxylation with an IC50 value of 2 microM, whereas the IC50 values for epoxidation were 60 and 51 microM for DDMS and DBDD, respectively. Studies using recombinant rat CYP4A isoforms showed that PPOH caused a concentration-dependent inhibition of omega-hydroxylation and 11, 12-epoxidation by CYP4A3 or CYP4A2 but had no effect on CYP4A1-catalyzed omega-hydroxylase activity. On the other hand, DDMS inhibited both CYP4A1- and CYP4A3- or CYP4A2-catalyzed arachidonic acid oxidations. Inhibition of microsomal activity by PPOH, but not DDMS, was time- and NADPH-dependent, a result characteristic of a mechanism-based irreversible inhibitor. These studies provide information useful for evaluating the role of the CYP-derived arachidonic acid metabolites in the regulation of renal function and blood pressure.
منابع مشابه
Localization of rat cytochrome P450 in various tissues and comparison of arachidonic acid metabolism by rat P450 with that by human P450 orthologs.
Metabolites of arachidonic acid produced by P450 are interesting substances with prominent physiological functions. To elucidate the physiological function of P450, it is necessary to identify a specific P450 in a particular tissue or organ and to characterize its catalytic activities. In this study, the expression of CYP2A1, 2B1, 2C23, 2J3, and 4F1 was investigated in liver, lung, kidney, sple...
متن کاملAcute doxorubicin toxicity differentially alters cytochrome P450 expression and arachidonic acid metabolism in rat kidney and liver.
The use of doxorubicin (DOX) is limited by significant cardiotoxicity, nephrotoxicity, and hepatotoxicity. We have previously shown that DOX cardiotoxicity induces several cardiac cytochrome P450 (P450) enzymes with subsequent alteration in P450-mediated arachidonic acid metabolism. Therefore, in the current study, we investigated the effect of acute DOX toxicity on P450 expression and arachido...
متن کامل17β Estradiol Modulates Perfusion Pressure and Expression of 5-LOX and CYP450 4A in the Isolated Kidney of Metabolic Syndrome Female Rats
Prevalence of metabolic syndrome and progression of nephropathy depend on sex. We examined a protective effect of estradiol against nephropathy in metabolic syndrome through the modulation of the arachidonic acid metabolism by activating the 5-lipoxygenase and cytochrome p450 4A pathways. 28 female Wistar rats were divided into four groups of seven animals each: control, intact metabolic syndro...
متن کاملArachidonic acid-induced vasodilation of rat small mesenteric arteries is lipoxygenase-dependent.
We examined the mechanism of arachidonic acid-induced vasodilation in rat small mesenteric arteries and determined the primary arachidonic acid metabolites produced by these arteries. Responses to arachidonic acid in small mesenteric arteries from Sprague-Dawley rats were investigated in vitro in the presence or absence of endothelium or after pretreatment with inhibitors of nitric oxide (NO), ...
متن کاملCatalytic activity and isoform-specific inhibition of rat cytochrome p450 4F enzymes.
Arachidonic acid is omega-hydroxylated to 20-hydroxyeicosatetraenoic acid (20-HETE), which has effects on vasoactivity and renal tubular transport and has been implicated in the regulation of blood pressure. Cytochrome p450 (p450) 4A isoforms are generally considered the major arachidonic acid omega-hydroxylases; however, little is known about the role of rat CYP4F isoforms in 20-HETE formation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 284 3 شماره
صفحات -
تاریخ انتشار 1998